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ABSTRACT Annual surveys of wildlife populations provide information about annual rates of change in populations but provide no

information about when such changes occur. However, by combining data from 2 annual surveys, conducted in different parts of the year,

seasonal components of population change can be estimated. We describe a hierarchical model for simultaneous analysis of 2 continent-scale

monitoring programs. The Christmas Bird Count is an early winter survey, whereas the North American Breeding Bird Survey is conducted in

June. Combining information from these surveys permits estimation of seasonal population variance components and improves estimation of

long-term population trends. The composite analysis also controls for survey-specific sampling effects. We applied the model to estimation of

population change in northern bobwhites (Colinus virginianus). Over the interval 1969–2004, bobwhite populations declined, with trend

estimate of �3.56% per year (95% CI ¼ [�3.80%, �3.32%]) in the surveyed portion of their range. Our analysis of seasonal population

variance components indicated that northern bobwhite populations changed more in the winter and spring portion of the year than in the

summer and fall portion of the year. ( JOURNAL OF WILDLIFE MANAGEMENT 72(1):44–51; 2008)
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The northern bobwhite (Colinus virginianus) has been of
conservation concern since early in the 20th century (see
review in Williams et al. 2004). Continuing concerns about
declines and needs for landscape-scale management to
enhance bobwhite populations have led to a variety of
conservation activities and research into demography and
habitat associations of the species (Guthery et al. 2000,
Dimmick et al. 2002, Peterson et al. 2002). Fundamental to
the discussion of population change in bobwhite in recent
years has been use of information from the North American
Breeding Bird Survey (BBS; Sauer et al. 2005a), which
provides quantitative information on population change at a
variety of geographic scales within the United States portion
of bobwhite range. Although the BBS has features that limit
its use for some conservation activities (Sauer et al. 2005b),
model-based analyses with controls for factors affecting
detectability provide a basis for estimation of population
change. Such analyses also allow for investigation of
relations between population relative abundance or change
and environmental features (Link and Sauer 2002).

Hierarchical modeling procedures used in modern BBS
analysis can be adapted to allow for simultaneous analysis of
BBS data and data from other surveys (Link and Sauer
2002). We present analyses of local and range-wide
population change for northern bobwhite based on data
from the BBS and the Christmas Bird Count (CBC;
Butcher 1990). We used data from across the bobwhite
range (comprising 69 strata, defined as the intersection of
states and physiographic strata) over the 36-year period
from 1969 to 2004. Our analysis took into account the

distinct sampling features of the 2 surveys—observer effects
in the BBS and effort effects in the CBC—while modeling
features of population change common to the 2 surveys. The
temporal staggering of the 2 surveys (BBS, early summer;
CBC, early winter) can be exploited to examine seasonal
components of annual population change. Bobwhites are
nonmigratory, so these components of population change
are interpretable in terms of recruitment and mortality
effects. The potential value of such an approach is 2-fold: 1)
it provides more information for estimation of population
change; and 2) it allows estimation of seasonal variation in
population change, which can be associated with environ-
mental features influencing change and used as an additional
source of change data for comparison with predictions from
demographic models.

We begin by describing the 2 surveys and the model we
use for analysis of the combined data set. The model
includes survey-specific sampling effects and survey-inde-
pendent population effects. We describe the population
effects, and their manifestation in BBS and CBC counts.
Next, we describe the survey-specific sampling effects, then
the fitting of the model under the Bayesian paradigm, and
the construction of composite indices. Our goal in this paper
is to communicate the potential and value of the combined
analysis while limiting description of technical aspects of the
analysis; a more detailed account of a similar analysis applied
to Carolina wrens (Thryothorus ludovicianus) is given in Link
and Sauer (2007). Finally, we present survey-wide summa-
ries and results for 5 selected strata, and compare the
composite results to a BBS analysis for the species
conducted using the methods of Link and Sauer (2002).
To our knowledge, the results presented in this paper1 E-mail: wlink@usgs.gov
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represent the first analysis of bobwhite data using hier-
archical models for estimation of population change and the
first composite analysis for the species.

METHODS

North American Breeding Bird Survey
The BBS is a roadside survey that was initiated in 1966 and
consists of .4,000 routes in the United States and Canada,
of which approximately 3,000 are surveyed annually in early
June. Observers conduct 3-minute counts of all birds seen or
heard at 50 stops at 0.8-km increments along a 39.5-km
route. We based our analysis on the total counts of
bobwhites by route. Counts were conducted according to a
set of protocols regarding time of day, weather conditions,
and observer behavior, with the goal of reducing irrelevant
sources of variation in the data. Nevertheless, substantial
variation exists among BBS observers (Sauer et al. 1994).
There also is evidence of variation within observers (i.e., that
the proportion of birds detected by an individual changes
through time). Informal analysis of the latter effect indicated
that it is limited to and adequately accounted for by a first-
year effect, in that observers tend to count fewer bobwhites
than expected in their first year. It is crucial that observer
effects be included in analysis of BBS data because there is a
substantial turnover in observers (median yr of service is
roughly 4 or 5), and there is considerable evidence of
temporal trend in the proportion of birds counted by new
recruits to the BBS (Sauer et al. 1994). See Sauer et al.
(2005a) for details of the BBS, its history, data limitations,
summaries of analyses for 419 species, and a bibliography.

Christmas Bird Count
Initiated in 1900, the CBC consists of counts made on 24.1-
km-diameter circles from mid-December to early January.
The CBC is primarily recreational, and there is little
standardization of counting methods aside from limiting the
counts to those collected by known participants in a single,
preselected day. The number of individuals participating and
the duration of counts vary among circles and through time
(see Butcher 1990 for details of the CBC). In recent years,
the number of party-hours has been recorded as a covariate
to account for the variable duration of and participation in
the count. We refer to this covariate as effort. In Fig. 1, we
present a graph of total counts of bobwhite, with and
without controls for effort; the reason for the discrepancy in
the apparent pattern of population change becomes evident
on examining Fig. 2, which displays a simple effort
adjustment (mean effort/effort in yr i) as a function of year.
The importance of controlling for effort is manifest.

Model
We model counts using an overdispersed Poisson loglinear
regression. We assumed that 1) conditional on their means,
counts were Poisson random variables; and 2) each mean k
could be decomposed as

logðkÞ ¼ Sampling Effectsþ Population Effects
þNoise: ð1Þ

The Noise term in equation 1 is normally distributed, with
survey-specific variance and mean equal to zero. Given the
efforts for standardization in the BBS, and the informal
nature of the CBC, we anticipated that this error variance
would be greater for the CBC than for the BBS. The
inclusion of this random error term makes this an
overdispersed Poisson regression because the variance of
counts is greater than explained simply by the covariates.
We implemented the analysis over many strata. In the
model description below, we suppressed indexes for strata in
the population effects, but we noted when random effects or
hierarchical components of the model apply among strata.

Population effects.—We modeled the sampling effects
for both surveys as departures from a zero baseline. Thus the
remaining quantities in equation 1, the Population Effects,

Figure 1. Total counts of northern bobwhite on Christmas Bird Count
circles in United States and Canada, 1969–2005 (dashed line), compared to
the total counts scaled to mean effort as indexed by number of party-hours
(solid line).

Figure 2. Simple effort adjustment for Christmas Bird Count circles in
United States and Canada, 1969–2005.
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can be thought of as a time series of numbers scaled to a
typical log count for each survey. The Population Effects are
free of sampling effects that may change through time, and
that would be confounded with population change.

Let ly
k denote the population effects in year y for a

count on survey k (k ¼ BBS, CBC). Both sequences ly
BBS

and ly
CBC (y ¼ 1, 2, . . . , Y ) reflect temporal population

change, but ly
BBS 6¼ ly

CBC for 2 reasons: 1) the 2 counts are
conducted in different times of the year, when the
population size is not the same; and 2) even if it were
possible to conduct the surveys at the same time, the
numbers of birds counted would be different due to basic
issues of scale. In the bobwhite data, for instance, 23% of
the BBS counts were zeros vs. 44% for the CBC. For
nonzero counts, the mean and standard deviation for the
BBS were 26.1 and 26.9, versus 34.1 and 49.0, respectively,
for the CBC.

Nevertheless, the patterns of change in the 2 series are
related. Let Wy denote the log of the proportional change in
population size associated with the winter and spring season
of calendar year y (roughly Jan to Jun), and let Sy denote the
log of the proportional change in population size associated
with the summer and fall season (roughly Jul to Dec).
Recalling that the CBC is conducted in December and the
BBS in June, we described temporal changes in counts over
the surveys’ annual cycles as

l CBC
yþ1 ¼ l CBC

y þWyþ1 þ Syþ1 ð2Þ

and

l BBS
yþ1 ¼ l BBS

y þ Sy þWyþ1: ð3Þ

Given that we can estimate ly
BBS and ly

CBC for y¼ 1, 2,
. . . , Y, Eqs. 2 and 3 provide hope that we might be able to
recover information about seasonal components of popula-
tion change Wy and Sy.

We could not estimate the specific values of Wy and Sy

because baseline differences in typical counts confound
differences in survey methodology with differences in season
of count. However, we could estimate

d W
y ¼ Wy �W2

for y ¼ 3, 4, . . . , 36, and

d S
y ¼ Sy � S1

for y ¼ 2, 3, . . . , 36 (details on why these parameter values
are identifiable are presented in Link and Sauer 2007).
Although the model does not allow estimation of the
proportional change in the population for any particular
winter or summer, it does allow comparisons among years.
For instance, because we can estimate d5

W and d4
W, we can

estimate d5
W� d4

W¼ (W5� W2)� (W4� W2)¼W5� W4,
and compare the winter proportional change for years 4
and 5.

Hierarchical structure.—We used hierarchical structure
in our model, that is, we treated parameters as random
variables, themselves sampled from distributions governed

by higher-level parameters. The structure we used was the
one implied by positing that, within strata, the effects Wy, y
¼ 1, 2, . . . , 36, were sampled from normal distributions with
stratum-specific variances rs

2(W ). Similarly, the structure
was the one implied positing that the effects Sy, y¼1, 2, . . . ,
36, were sampled from normal distributions with stratum-
specific variances rs

2(S). The quantities rs
2(W ) and rs

2(S)
can be estimated based on the variation in dy

W and dy
S.

We were interested in comparing the magnitude of rs
2(W)

and rs
2(S); hence, we estimated

Ps ¼
r 2

s ðW Þ
r 2

s ðW Þ þ r 2
s ðSÞ

ð4Þ

for each of the strata.
We extended the hierarchical structure one step further

and supposed that rs
2(W) and rs

2(S) were sampled from
lognormal distributions. This allowed us to estimate a
composite version of Ps, namely

P ¼
E
�
r 2

s ðW Þ
�

E
�
r 2

s ðW Þ
�
þ E

�
r 2

s ðSÞ
� ; ð5Þ

where E(X ) means the expected value of X.

Sampling Effects
Sampling effects are an example of what are commonly
called nuisance parameters. These effects are of little interest
per se but are required for valid inference about parameters
of interest (in the present case, the population parameters
ly

BBS and ly
CBC, and corresponding hierarchies of param-

eters). For bird surveys, the nuisance parameters often
provide insights into the mechanics of counting birds, and
have intrinsic interest for those designing surveys.

Sampling effects in the BBS.—We include 2 observer
effects in our analysis of BBS observers. The first is a
parameter g, included if the count was in the first year of the
observers’ service. Previous experience with BBS data
suggests that g tends to be negative, with exp(g) often
approximately 0.95, suggesting that new observers count
5% fewer birds than they would have under similar
circumstances, but with more experience.

In addition, we include individual-specific observer effects,
which we model hierarchically as having been sampled from
a mean zero normal distribution with variance r2(obs).

Sampling effects in the CBC.—Many analyses of CBC
data begin by scaling the counts by the corresponding effort
(e.g., Butcher and McCulloch 1990). If we want to convert
counts to a common scale corresponding to the mean level
of effort, we might first divide them by the associated effort
n, then multiply by the average effort n̄. In terms of the
loglinear model, this amounts to including a term of the
form log(n/ n̄) in equation 1.

Implicit in the usual scaling by effort is the notion that
counts should increase at a constant rate as effort increases.
This assumption is questionable because there is a fixed
number of birds available for counting, so one might expect
diminishing returns in numbers counted as effort increases.
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Thus, Link and Sauer (1999) and Link et al. (2006)
suggested a flexible family of alternative effort-effect models
that includes log(n/ n̄) as a special case; the general form of
the effect of effort, on the log scale, is

f ðnÞ ¼ B
�
ðn=nÞp � 1

�
=p; ð6Þ

where B and p are parameters. Setting B¼ 1 and taking the
limit as p approaches zero, one obtains the usual effort
adjustment, f (n)¼ log(n/ n̄). If p , 0 and B is positive, the
effect of effort has an asymptote.

Johnson (1981) suggested scaling CBC counts by a factor
of 1� aþ a n, for some value a, 0 � a � 1. This represents
a compromise between no effort adjustment (dividing by 1,
if a¼ 0) and scaling by effort (dividing by n, if a¼ 1), and
can be thought of as a linear approximation to the richer
family of effort adjustments we used. This is because the
linear Taylor approximation to exp( f (n)) about n ¼ n̄ is
1 � B þ B(n/ n̄).

In our analyses of CBC data, we let the parameters p and B

be stratum specific, modeled hierarchically as sampled from
normal distributions.

Strata and Aggregation of Information
Historically, both surveys have been analyzed using physio-
graphic strata, which reflect both methodological (e.g.,
variation in density of sample units) and bird-population
(e.g., regional variation in bird abundance and change
associated with regions) constraints on the analysis (Link
and Sauer 2002, Link et al. 2006). We used Bird
Conservation Regions within states and provinces as the
fundamental scale for application of the model (e.g., Sauer
et al. 2003, Link et al. 2006). We present within-stratum
estimates of population change and annual abundances
based on expected values of counts for randomly selected
BBS routes (Link and Sauer 2002, Link et al. 2006). We
also present area-weighted annual abundances for summa-
ries among strata (Link and Sauer 2002).

We present results for 5 selected strata: Georgia Coastal
Plain, Indiana Central Hardwoods, Maryland Mid-Atlantic
Coast, Missouri Tall-grass Prairie, and Texas Oaks and
Prairie. We provide composite results for the surveyed area.
Presentation of BBS and CBC results on the same axis
require that CBC results be scaled, and we scaled the CBC
and BBS by adjusting the CBC counts to the mean level (on
the log scale) of BBS counts for the region. We also
analyzed survey results based only on BBS data for
comparison with the combined survey results. We con-
ducted BBS-only analyses using the methods described in
Link and Sauer (2002). To assess the increase in efficiency
associated with adding CBC data to the analysis, we
compared the width of the credible intervals (Bayesian
analog of confidence interval) from the analyses of the
population (yr) effects, scaled to the median estimates.

Model Fitting
The model we described includes complex hierarchical
structures and nonlinear parameters (parameters p in the

effort adjustment for the CBC), hence is not easily fit using
conventional methods. However, it is easily fit using
Bayesian methods. We conducted our analyses using
program WINBugs, which is available for free download
(,www.mrc-bsu.cam.ac.uk/bugs/.). The code we used to
conduct our analyses is available from the authors on
request.

Bayesian inference requires the specification of prior
distributions for parameters; these probability distributions
are a mathematical expression of existing knowledge about
the parameters. Prior distributions can be informative (i.e.,
indicative that certain values of the parameters are more
likely than others) or noninformative. On one hand, the
existence of a formal mechanism for incorporating existing
knowledge is an attractive feature of Bayesian inference. On
the other hand, analysts often desire to let a single data set
speak for itself and thus choose noninformative priors.
Bayesian inference is based on posterior distributions,
proportional to the product of the prior distribution and
the likelihood. For a more detailed introduction to Bayesian
inference, we suggest Gelman et al. (2004), Gilks et al.
(1996), or Link et al. (2002).

We chose standard, noninformative priors on the highest-
level parameters. By highest-level parameters we mean 1)
those governing the distributions of hierarchically modeled
parameters, such as the mean and variance of the
distribution of effort parameter p across strata; and 2)
parameters defined without hierarchical structure (e.g., the
first-yr observer effect g). These priors were either flat
normal distributions (for means) or flat gamma distributions
(for variances).

Program WINBugs implements Bayesian inference using
Markov chain Monte Carlo (McMC; Spiegelhalter et al.
1999). Markov chain Monte Carlo evaluates features of
posterior distributions through simulation. Prior distribu-
tions and data are used to generate series of correlated
samples (Markov chains, or chains) from the posterior
distribution. We used posterior medians as point estimates,
and the 2.5th and 97.5th percentiles to define interval
estimates.

Care must be taken in implementing McMC. First, it
must be recognized that early values of the chains may not
be representative samples of the posterior distribution. This
problem is avoided by discarding an appropriately large
number of early observations, described as a burn-in. A
second consideration is that the reliability of the simulations
depends on the degree of autocorrelation in the chains.
Analysts need to take care that the combination of chain
length and autocorrelation are sufficient for reliable
inference.

We generated chains of length 105,000, discarding the
first 5,000 values as a burn-in. The autocorrelation of the
resulting chains was limited relative to the length of the
chains, indicating satisfactory performance of the Markov
chain simulation. Owing to the complexity of the model and
the large size of the data set (32,281 counts by 5,353
observers for the BBS, and 23,417 counts on 1,134 circles
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from the CBC), the simulation took approximately 10.5
hours on a 3.2-GHz desktop computer system.

RESULTS

Nuisance Parameters
As we anticipated, the CBC data were noisier than the BBS,
in the sense that the standard deviation of the noise term in
equation 1 was larger for the CBC data than for the BBS
data. The posterior median (a Bayesian point estimate) of the
CBC error standard deviation was 1.459, with 95% credible
interval (1.435, 1.482). For the BBS, the estimate was 0.322,
with credible interval (0.317, 0.328). The standard deviation
of observer effects for the BBS was 1.067, with credible
interval (1.041, 1.093), and the standard deviation among
CBC circle effects was 1.494, with credible interval (1.418,
1.573).

A small but significant portion of the variability among
BBS observers can be attributed to change in the pool of
observers: we calculated the posterior distribution of the
slope of the least squares line regressing observer effects on
the observer’s first year of service, obtaining a point estimate
of 0.012 (0.008, 0.016). This small amount of trend in the
observer pool, combined with the pattern of change among
observers in the data set, is sufficient to account for a
positive bias of approximately 0.9% per year in estimating
population change, underscoring the importance of controls
for difference among observers.

We estimated the first-year observer effect for the BBS as
�0.065, with interval estimate (�0.084, �0.047). This
means that observers typically counted approximately
6.3% ¼ 100% (1 � exp[�0.065]) fewer bobwhites than
would otherwise be expected in their first year of service.
Failure to include this effect could produce a positive bias in
trend estimate.

The effort effects modeled for the CBC ( f (n), defined by
eq 6) had mean value of p estimated as �0.168 (�0.319,
�0.004) and mean value of B estimated as 0.827 (0.706,
0.954). The pair (p ¼ 0, B ¼ 1) corresponding to the usual
effort adjustment (i.e., scaling count by effort) was in the
extreme tail of the joint posterior distribution, with
,0.83% of the distribution further away from its center.
The value 0.83% is a Bayesian p-value strongly indicating
the inadequacy of the usual effort adjustment.

Population Effects
Sample results from the 5 strata and the summary of 69
strata all show declining populations (Fig. 3). All strata

exhibit declines, but many also show large declines in counts
in the mid-1970s, a period of notably severe winters in the
eastern and central United States (Link and Sauer 2007).

Comparison with a BBS-only analysis indicates only a
slight increase in precision associated with use of the
composite analysis. Median half-width of the confidence
interval in the composite summary was 6.43% of the point
estimate; in an analysis of the BBS data alone, the typical
95% credible interval was estimated 6 7.50% of the point
estimate.

We defined population trend as the geometric mean
percentage population change per year over the time
interval; estimates for 5 strata are given in Table 1. The 5
regions we summarized and the survey-wide average docu-
ment significant declines. The area- and abundance-
weighted average across the range of the species was
�3.56% per year (�3.80, �3.32).

Estimates of the relative magnitude of winter variation Ps

defined by equation 4 are also given in Table 1. The
composite value P defined by equation 5 was more
somewhat more precisely estimated as 0.747 (0.162);
90.1% of the posterior mass for this parameter was above
0.500, indicating reasonable support for the conclusion that
northern bobwhite populations tend to have larger fluctua-
tions in the winter and spring portion of the year than in the
summer and fall portion of the year.

DISCUSSION

Although many analyses have documented declines in
bobwhite populations (e.g., Sauer et al. 2005a), integrating
the primary monitoring databases for the species provides an
opportunity for us to enhance the quality of the estimates of
population change and evaluate seasonal patterns of change.
Our composite analysis of BBS and CBC data provides
composite results of slightly higher precision, although the
large variation associated with CBC data tends to mitigate
their value in improving the precision of the overall
estimates of change.

The BBS and CBC data sets do not support estimation of
actual population size but can be used to estimate population
change over their staggered annual cycles. Similarly,
composite analysis of the BBS and CBC does not support
estimation of baseline differences in the proportions counted
by the 2 surveys, these being confounded with temporal
change in the population between the summer and winter.
Consequently, it is not possible to estimate year-specific
seasonal rates of population change. However, under the

Table 1. Regional and composite trend estimates (% change/yr) with associated 95% credible intervals, and estimated relative magnitude of seasonal
components of population variation (Ps) and its standard error.

Region Trend 95% credible interval Ps SE

Georgia Coastal Plain �4.71 �5.38, �4.06 0.56 0.30
Indiana Central Hardwoods �4.62 �5.75, �3.46 0.91 0.19
Mid-Atlantic Coast �7.62 �8.26, �6.98 0.21 0.27
Missouri Tall-grass Prairie �2.53 �3.39, �1.65 0.86 0.24
Texas Oaks and Prairie �5.63 �6.30, �4.97 0.45 0.25
Survey-wide �3.56 �3.80, �3.32 0.75 0.16
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Figure 3. Expected counts of northern bobwhite on North American Breeding Bird Survey (BBS) routes, 1972–2004, in (a) Georgia Coastal Plain, (b)
Indiana Central Hardwoods, (c) Maryland Mid-Atlantic Coast, (d) Missouri Tall-grass Prairie, (e) Texas Oaks and Prairies, and (f) survey-wide, all adjusted
for observer effects (solid dots and line), with 95% credible intervals. Open circles are expected counts from Christmas Bird Count circles, adjusted for effort
and scaled to mean level of BBS counts.
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model we presented, we can estimate variation in seasonal
rates of population change.

A critical result from the composite analysis is that most of
the variation in population size is associated with the winter
to spring period. Evaluation of population dynamics by
intervals within the year has great potential as supplemental
information for validating or directly tying the monitoring
information to demographic parameters and models (e.g.,
Guthery et al. 2000). Population change occurring in winter
to spring reflects changes in survival, whereas change from
summer to fall reflects both reproduction and survival.
Unfortunately, the timing of the BBS and CBC makes it
difficult to directly connect the survey data to major events
influencing survival and reproduction. Bobwhites are already
reproducing when the BBS is conducted in June (although
young are not counted in the survey), and the CBC counts
occur during the middle of most hunting seasons, which
span from October to March. Consequently, timing of
demographic modeling exercises may not coincide with the
survey times. However, the CBC counts generally occur
before severe winter events; hence, the variation associated
with the winter to spring portion of the year likely reflects
the winter mortality in bobwhite associated with severe
winters. Declines in the severe winters of the mid-1970s are
clearly seen in the population time series for the northern
strata (Fig. 3). Although it is beyond the scope of our study,
we note that the seasonal components of population we
presented can be used to evaluate hypotheses regarding the
factors influencing population change.

Analysis of the nuisance factors provides many insights
into the mechanics of surveys, showing that both effort in
counting (for the CBC) and observer startup and temporal
variation play a large role in influencing our views of
population change. Changes in levels of nuisance factors
over time increase the counts. Startup effects cause counts to
be 6.3% lower the first year of counting, and changes in
observer quality introduce a positive bias of about 0.9% per
year in estimates of change. Effort effects on CBC counts
are well known (Butcher and McCulloch 1990), but our
analysis shows that standard effort adjustments (e.g., simple
division by effort as implemented in many analyses) are not
sufficient for analysis of bobwhite data.

Other counting factors may also influence estimates of
population change in bobwhites. The tendency for variation
in calling rates with abundances and other environmental
factors (Wellendorf et al. 2004) has long been thought to
cause underestimates of population change. The hierarchical
model we described could be modified to include a model
for variation in calling rates if sufficient information were
available for the regions used in the analysis.

MANAGEMENT IMPLICATIONS

Composite analyses of BBS and CBC data permit efficient
use of information collected in 2 seasons for estimation of
population change. The composite model also provides a
general framework for associating factors that may influence
bobwhite populations, such as habitat changes and harvest,

with seasonal population change and baseline abundance.
We encourage the use of this model in developing the
predictive models needed to assess the consequences of
possible management actions on bobwhite populations, and
suggest that the composite survey results could be used
directly as a state variable for assessing the consequences of
changes in harvest rates and other management actions.
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